Shilnikov bifurcation: Stationary Quasi-Reversal bifurcation

نویسندگان

  • Marcel G. Clerc
  • Pablo C. Encina
  • Enrique Tirapegui
چکیده

A generic stationary instability that arise in quasi-reversible systems is studying, which is characterized by the confluence of three eigenvalues at the origin of complex plane with only one eigenfunction. We characterize the unified description of this bifurcation and the dynamics exhibits by this model. In particular, the chaotic behavior—homoclinic Shilnikov chaos—exhibits by this model. A simple mechanical system—Shilnikov particle—that exhibits this quasi-reversal instability is proposed and it displays this chaotic behavior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite-dimensional dynamical system modeling thermal instabilities

We describe a three-dimensional dynamical system, which is obtained as a pseudo-spectral approximation to a free boundary problem modeling solid combustion and rapid solidification, and is capable of generating its major dynamical patterns. These patterns include a Hopf bifurcation followed by a sequence of secondary period doubling and a transition to chaos, reverse sequences, and sequences fo...

متن کامل

Showcase of Blue Sky Catastrophes

Let a system of differential equations possess a saddle-node periodic orbit such that every orbit in its unstable manifold is homoclinic, i.e. the unstable manifold is a subset of the (global) stable manifold. We study several bifurcation cases where the splitting of such a homoclinic connection causes the Blue Sky Catastrophe, including the onset of complex dynamics. The birth of an invariant ...

متن کامل

Detecting the Shilnikov scenario in a Hopf-Hopf bifurcation with 1:3 resonance

We investigate the behaviour of the primary solutions at a Hopf-Hopf interaction close to a 1:3 resonance. It turns out, that the secondary bifurcations from the primary periodic solution branches are governed by Duffing and Mathieu equations. By numerical path following a homoclinic orbit at a saddle node was detected, giving rise to the Shilnikov scenario. In order to understand the creation ...

متن کامل

Multistability and Infinite Cycles in a Model of the Leech Heart Interneuron

We argue that the Lukyanov-Shilnikov bifurcation of a saddle-node periodic orbit with noncentral homoclinics explains the effect of bi-stability observed in a neuron model based on a HodgkinHuxley formalism. In this model the dominating regime, depending on the initial state, can be either spiking oscillations or weakly irregular bursting ones. It is also shown how the bifurcation of the blue-s...

متن کامل

Global organization of spiral structures in biparameter space of dissipative systems with Shilnikov saddle-foci.

We reveal and give a theoretical explanation for spiral-like structures of periodicity hubs in the biparameter space of a generic dissipative system. We show that organizing centers for "shrimp"-shaped connection regions in the spiral structure are due to the existence of Shilnikov homoclinics near a codimension-2 bifurcation of saddle-foci.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • I. J. Bifurcation and Chaos

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2008